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Abstract. This paper is devoted to studying two multiobjective problems for stochastic degen-
erate parabolic equations. The first one is a hierarchical control problem, in which the controls are
classified into a pair of leaders and a pair of followers. For each pair of leaders, a Nash equilibrium
is searched for a noncooperative game problem. The aim of the pair of leaders is to achieve null
controllability of the system. The other multiobjective problem is an inverse initial problem under
a Nash equilibrium strategy. In contrast to the classical inverse initial problem, an optimization
problem for stochastic degenerate parabolic equations is first investigated. Then, the conditional
stability of determining initial information is derived through terminal observation.
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1. Introduction. In most classical control problems, a system usually has only
one objective or task. For example, the aim is to find a control to attain a given
target or to determine unknown information of the system by local observation. How-
ever, in practice, an interesting situation will arise when several different (even con-
tradictory) objectives are studied simultaneously, such as economic, transportation,
and engineering systems [9, 26, 33]. A variety of control strategies appear, based on
the characteristics of multiobjective control problems in economics and game theory
[25, 27, 29]. A related question is whether one can direct the system to a desired state
by exerting controls corresponding to the strategies.

In the multiobjective case, the system may involve multiple active actors, whose
behaviors are motivated by self-interest. The individual rationality may result in
strategic behaviors to pursue their own interests. Sometimes, individual behavior has
a leader-follower relationship, and the corresponding strategy was introduced in the
work of Stackelberg [29] to describe this situation. The general idea of this strategy is
a hierarchical game where players compete with each other. The leaders take action
first, and the followers make the corresponding response to the action of the leaders.
There may be many followers, each of them with a specific objective. And, the
followers tend to achieve a Nash equilibrium. A Nash equilibrium is a combination
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of strategies in which no player can benefit from changing strategies alone. In other
words, when the others do not change their strategies, no one can get more benefit
by only changing his own strategy, and then the combination of strategies is a Nash
equilibrium.

As a typical class of diffusion equations, degenerate parabolic equations can de-
scribe many different physical phenomena, such as Budyko—Sellers equations that
model the interaction between large ice masses and solar radiation [6]. Stimulated
by the need to take into account random effects in practical problems, stochastic
processes naturally replace deterministic functions in a mathematical way, and the
associated model becomes a stochastic degenerate parabolic equation. This paper is
devoted to investigating the controllability and inverse problem for a class of stochastic
degenerate parabolic equations under a Nash equilibrium strategy.

Let T > 0, and let Go, Gy, and G2 be nonempty open subsets of (0,1). Set
Q = (0,1) x (0,7), and set a(z) = z* for o € [0,2) and « € [0,1]. Denote by x¢,
the characteristic function of the set Go. Let (2, F,{F;}+>0,P) be a complete filtered
probability space, on which a one-dimensional standard Brownian motion {W(¢)}:>0
is defined, so that F = {F;};>¢ is the natural filtration generated by W (-), augmented
by all P-null sets in F. Let H be a Banach space and C(]0,T];H) be the Banach space
of all H-valued strongly continuous abstract functions defined on [0,7]. We denote
by L2(0,T;H) the Banach space consisting of all H-valued {Fi}+>0-adapted processes
X (+) such that E(]X () %Q(O’T;H)) < oo with the canonical norm, Lg°(0,T;#H) denotes
the Banach space consisting of all H-valued {F;};>o-adapted essentially bounded
processes, and L2(2; C([0,T]; H)) denotes the Banach space consisting of all H-valued
{Fi}+>0-adapted continuous processes X (-) such that E(|X(-)|é([07T};H ) < 0.

Consider the following one-dimensional stochastic degenerate parabolic equation:

dy — (xaygc)wdt = (a1y +uixa, + vixa, +v2xa,)dt
+(a2y+u2)dW(t) in Qv
0,t)=0 if0<a<l,
(1.1) v(0.7) on (0,7),
(2%2)(0,t) =0 if1<a<2
y(1,t)=0 on (0,7),
y(x,0) = yo(x) in (0,1),

where y, denotes the weak derivative with respect to the spatial variable z, (ug,us)
is the pair of leaders, (v1,v2) is the pair of followers, yo = yo(x) denotes the initial
data, and y =y(-, -; u1,u2,v1,v2) is the state variable.

First, we study a controllability problem in the sense of the Stackelberg—Nash
strategy for (1.1). In fact, this type of controllability means that for each pair of
leaders, a Nash equilibrium pair needs to be found, and the goal of the pair of leaders
is to achieve controllability. The decisions of the followers are influenced by the
decisions of the leaders.

The controllability problems in the sense of the Stackelberg—Nash strategy come
from practice. For example, in order to remedy market failure and promote cooper-
ation, the government can regulate macroeconomics through legislation and policies.
Using the tools and methods of game theory, we can model the macroeconomic system
as a noncooperative dynamic game involving the government, multiple enterprises,
and the market. The government can influence the dynamics of the system by for-
mulating certain policies. Enterprises and the market groups can pursue their own
interests based on these policies. If we take policy as a regulator of a higher level,
then it can reach some satisfactory macroeconomic states by adjusting the Nash equi-
librium formed by enterprises and the market.
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When the model is described by a distributed parameter system, we refer to
[1, 2, 3, 8, 11, 15, 16, 28] for some known works on Stackelberg-Nash type control-
lability problems. In the stochastic case, there have been rich works on the leader-
follower hierarchical control problems on Stackelberg games ([24, 31, 34, 37] and
references therein).

In [37], the authors focused on stochastic differential equations. They formu-
lated controllability problem of stochastic game-based control systems in the general
stochastic nonlinear framework and obtained some explicit necessary and sufficient
algebraic conditions on the controllability of the Nash equilibrium for linear stochas-
tic systems. In this paper, we focus on stochastic degenerate parabolic equations.
We will first present the existence and uniqueness of the Nash equilibrium for any
given pair of leaders (see Theorem 3.1), and then prove the null controllability in the
sense of the Stackelberg—Nash strategy for (1.1) (see Theorem 2.1), by constructing
an appropriate observability estimate (see Theorem 3.2).

The other multiobjective problem is an inverse problem for the stochastic de-
generate parabolic system (1.1) under a Nash equilibrium strategy. This type of
inverse problem has many practical applications. For example, if y represents the
concentration of chemicals, we want to keep the concentration and the rate of change
in concentration close to their desired values by adding water to or evaporating it
from the chemical, and at the same time, the initial concentration is expected to be
determined by the observation at the terminal time.

There have been numerous results on inverse problems for deterministic and sto-
chastic partial differential equations ([13, 20, 21, 32, 36] and the references therein).
Different from the classical inverse problems, the inverse problem studied in this pa-
per is a combination of the classical one and game theory. The goal of controls is
on the Nash equilibrium. Meanwhile, we want to determine the initial value from
the known observation information. For this purpose, an interpolation inequality is
proved to determine initial value through the observation at the terminal time (see
Theorem 2.6).

In order to deal with the inverse problem, we establish quantitative uniqueness es-
timates for the coupled stochastic forward-backward equations. However, the classical
inverse problems only study the forward equations. In this paper, the key to solv-
ing the inverse problem is the Carleman estimates for stochastic degenerate parabolic
equations. By choosing a space-independent weight function, the desired Carleman es-
timates can be established by a weighted identity method (see Theorems 4.1 and 4.2)
and a duality technique (see Theorem 4.3), respectively.

The main contributions of this paper are as follows:

e Compared with [37], we study the Stackelberg—Nash type controllability prob-
lem for the stochastic degenerate parabolic equation by the classical duality argument.
The key is to transform the origin hierarchical control problem into the observabil-
ity estimate of the coupled forward-backward stochastic partial differential equations.
Compared with existing results, the followers in this paper achieve more goals, and
the observation domains of the followers are less restricted. The energy functionals for
followers can be more general and contain the gradient of the state. Since drift terms
in the coupled equations belong to a Sobolev space of negative order, the problem is
much more complicated.

e The inverse problem for a stochastic degenerate parabolic equation under a
Nash equilibrium strategy is transformed into an inverse problem for the coupled
forward-backward stochastic partial differential equations. Due to the appearance
of coupling terms and the limitations of observation information, we establish new
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Carleman estimates to overcome the difficulties. And, a quantitative estimate of the
initial value is obtained by the Carleman estimates.

The rest of this paper is organized as follows. Section 2 presents the main concepts
and results of this paper. Section 3 is devoted to characterizing the Nash equilibrium
and proving the Stackelberg—Nash type controllability result. The result of conditional
stability under a Nash equilibrium strategy is proved in section 4. Finally, section 5
summarizes the whole paper.

2. Problem formulation. In this section, we give some preliminary and the
main results. First, some notations are introduced. For 0 < o < 1, define the Hilbert
space HL(0,1) as follows:

HL(0,1)= { y € L*0,1) ‘ y is absolutely continuous in [0,1],
wy, € L2(0,1) and y(0) =y(1) =0 }.

For 1 <a <2, H}(0,1) is defined as follows:

HL(0,1)= { y € L?(0,1) ‘ y is locally absolutely continuous in (0, 1],
r2y, € L?(0,1) and y(1) =0 }

By [6, 14], for any initial data yo € L?(0,1), a1,as € Lg(0, T} L°°( 1)), (ur,ug) €
Uy & L4(0,T;L*(Gy)) x L2(0,T;L?(0,1)), and (vy,v2) & Uy & L(0,T;L*(Gy)) x
L2(0,T; L*(G2)), (1.1) admits a unique solution y € H £ L2(Q;C([0,T]; L(0,1))) N
L2(0,T; HA(0,1)).

Let us describe the controllability problem in the sense of the Stackelberg—Nash
strategy. For i =1,2, let O;,0; C (0,1) be the nonempty open sets, which represent
the observation domains. For any given pair of leaders (uj,u2) € Uj, define the
(secondary) cost functionals

. T T
Jim,w):‘;(E | [ w=vipasase | /5|xayx—y;-;22dxdt>
0 i 0 i
pi "
+JE/ / vidadt, i=1,2,
0 G;

where «; and p; are positive constants, (yi,yr,,) € (L3(0,T;L?(0,1)))? are given
functions, and y =y(, -; u1, ua,v1,v2) is the solution of (1.1) corresponding to the pair
of leaders (u1,uz2) and the pair of followers (v1,vq).

For any given pair of leaders, we need to find a Nash equilibrium with a non-
cooperative optimization problem. In other words, the main objective of the pair of
followers is to derive the state y and its derivative x®y, close to the desired states
(Yi,¥iyo) in the corresponding observation domains, with the cost as little as possible
for the pair of followers.

Indeed, a pair of followers (71,73) € Us is called a Nash equilibrium pair if

Jl(ﬁl,ﬁg) < Jl(’l)l,ﬁg) Yuv € L]%((LT; LZ(Gl))

(2.1) - c L
andJQ(vl,vz)ng(vl,vg) VUQGLF((),T,L (Gg))

This means a pair of followers is the Nash equilibrium pair if and only if the strategy
chosen by any player is optimal, when all other players’ strategies are determined.
Then, define the main cost functional
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1
J(ug,ug) = 51[3/ (u%xgo —I—ug)dxdt Y (u1,u2) € Uy.
Q

Let § represent the set of the pair of leaders (u,us) € Uy satisfying the following
condition:

(22) y(-,T;ﬂ]_,ﬂz,ﬁl,@g):o in (0,1), P-a.s.

The goal of the pair of leaders is to derive the solution of (1.1) to reach zero at time T'
with the minimum cost. It means that there exists a pair of leaders (uy,us) satisfying
that

(2.3) J(ﬂl,ﬂg)z min J(uhug).
(u1,u2)€F

We introduce the following assumption conditions on the coefficient as in this
paper:
(Hl) ag € L%O(O,T, WI’OO(O, 1)),
(H2) ap = 2%a3 with & > 252 and a3 € L (0,75 L>(0,1)).

In what follows, C' denotes a positive constant which may be different from place

to place. The first main result is the Stackelberg—Nash controllability of (1.1).

_ THEOREM 2.1. Fori=1,2, assume that O;NGy # 0, (01NGo) € O;, (02NGy) ¢
Oi, p1,p2 > 0 are sufficiently large, and the condition (Hy) or (Ha) holds. Also,
suppose that Case1: Oy = Oa, O1 = O, or Case2: O # Oy holds, and let (y;,y; ) €
(L2(0,T5L3(0,1)))? be equal to zero near T. Then, for any yo € L*(0,1), there exist
a pair of leaders (uy,usz) € Uy, and the associated Nash equilibrium (T1,72) € Ua, such
that (2.2) and (2.3) hold.

By the classical duality argument [23], the null controllability in Theorem 2.1 can
be deduced to an appropriate observability estimate (see Theorem 3.2 below). From
the observability estimate, we can get the above controllability result immediately.
So, we omit the proof of Theorem 2.1 here.

Remark 2.2. The conditions for (y;,y;, ) (1= 1,2) can be relaxed to

IE/ ﬁQ(t) ('yi|2X0i +xa\y;+2|2x(5i) dzdt < 400,
Q

where
44 T
= fi 0<t< 5,
(2.4) pt)=e® and ((t)=¢T1" o o2
m for bl S t S T

Remark 2.3. In this theorem, we get the same result in two cases. In Case 2, we
d~0n’t discuss the (:Nliﬁerence between Oy and O,. This is because conditions (O1NGg) €
O;, (02N Gy) € O; (i=1,2) are true in the theorem.

Remark 2.4. In practice, there may be many followers in the system, but the ideas
of Stackelberg—Nash type controllability are the same, and the results can be obtained
similarly. For simplicity, we only consider two follower controls in this paper, and
the number of leader controls cannot be reduced. It is very interesting to study the
controllability of a stochastic partial differential equation with only one leader control.
Until now, a positive result has been available only for some special cases of stochastic
parabolic equation [19].
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Remark 2.5. Two follower controls in this paper are active on the drift term. The
same result remains true when they are imposed on the diffusion term, or both the
drift term and the diffusion term.

Next, an inverse problem under a Nash equilibrium strategy is studied. This type
of inverse problem is a combination of the classical one and game theory. We consider
(1.1) without leader controls, and the goal of (v1,v2) is to achieve a Nash equilibrium,

e., (2.1) holds. At the same time, we want to determine the initial value from the
observation information.

The second result is the following interpolation inequality for the weak solution
of (1.1) when the pair of leaders (u1,uz2) = (0,0).

THEOREM 2.6. Assume that (uy,us) = (0,0) in (1.1), p1,u2 > 0 are sufficiently
large, My >0, and the condition (Hy) holds. For any yo € HL(0,1), to € (0,T), there
exist positive constants k € (0,1) and C, only depending on «, ty, and T, and a Nash
equilibrium (U1,02) € Uy such that the associated weak solution y to (1.1) satisfies

11—k

1 K 1
(2.5) IE/ y*(x,to)dr < C (E/ y2dzdt + MO) (IE/ y*(x,T)dx + M) ,
0 Q 0

where M =E [,(y1*xo, +y3>X0. + 2°°Y3%X 5, +2°yi* X, )dadt.

The key for obtaining the above result is the Carleman estimate, and the proof
of the theorem is given in section 4. As a direct consequence of the above theorem,
one has the following backward uniqueness result for (1.1).

COROLLARY 2.7. Under the assumption of Theorem 2.6, if y(T') =0 in (0,1),
P-a.s., and the desired states yf =0 (i = 1,2,3,4) in Q, P-a.s., then there exists a
Nash equilibrium (v1,02) € Uy such that the associated solution y to (1.1) satisfies
y(t) =0 1in (0,1), P-a.s. for all t € [0,T].

As another direct consequence of Theorem 2.6, we get the following conditional
stability for (1.1).

COROLLARY 2.8. For any L >0, set Hy, = {yo € H.(0, 1)||y0|Hé(071) <L}. Under
the assumption of Theorem 2.6, for any yo € Hy, there exists a Nash equilibrium
(U1,U2) € Uy such that the corresponding solution to (1.1) satisfies

1 1 11—k
B [ (e to)de <O M) (E / y2<x,T>dx+M) ,
0 0

where M = ]EfQ (yi*x0, + Y52 X0, +m20‘y§2X51 —&—xmyfx@z)dxdt. That is, under the
condition that the initial data yo is in a bounded set, there exists a Nash equilibrium,
such that any state y(x,t) ((z,t) € Q) can be determined quantitatively by the terminal

data y(T') and the given states vy (1=1,2,3,4).

Remark 2.9. Different from Theorem 2.1, we do not need to discuss the different
case of O; or O; in Theorem 2.6. This is due to the fact that the given states y;
(i=1,2,3,4) are observation information, and local information of the solution is not
required in the observation information.

3. Stackelberg—Nash controllability.

3.1. Nash equilibrium. In this subsection, we present the existence and unique-
ness of the Nash equilibrium for any given pair of leaders and give a characterization
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of it. For any given (u1,uz) € Uy, the pair (v1,73) € Uy is the Nash equilibrium with
respect to J; and J if and only if
J{(@l,ﬁg)(’ul, 0) =0 Vv € L]%((LT; LQ(Gl)),

3.1
3.1) and J5(01,02)(0,v2) =0 Vwg € L3(0,T; L*(G)),

where J;, J} denote the Fréchet operators of Jy, Ja, respectively. From the above
equivalence, the result of the Nash equilibrium is as follows.

THEOREM 3.1. Assume that p1,pue > 0 are sufficiently large, such that for any
given pair of leaders (ui,us) € Uy, there exists a unique pair of Nash equilibrium
(v1,72) € Uy satisfying (3.1) and

1
(32) Vy=——PiXG;> 1=1,2, P—CL.S.,
Hi

where (y,pi, B;) is the solution of the following coupled stochastic forward-backward
degenerate parabolic equations:

(3.3)
dy — (2%ya) ,di = (aly +UIXGo — R PIXGY — iszca) dt

+ (agy + ug)dW (t) in Q,
—dpi — (2%pix) ,dt = [a1pi + a2 P + iy — v} ) x0,

- ai(xmyx - w“y?+2)x><@]dt + P, dW (1) in Q,

{ y(0,t) =pi(0,t) = if 0<a<l, 0T,
(a: yx)( ) = (aco‘pm)(O,t):O if 1<a<?2

y(L,t) =pi(1,t) = on (0,T),
y(2,0) =yo(z), pi(z,T)=0 in (0,1).

Proof. See Appendix A for the proof.

3.2. Controllability. From Theorem 3.1, for any pair of leaders (u,us) € Uy,
there exists a unique pair of followers is the Nash equilibrium pair. The solution of
(1.1) corresponding to the above pairs of leaders and followers satisfies (3.3). Thus,
the controllability problem in Theorem 2.1 can be transformed into finding controls
(u1,u2) € Uy such that the corresponding solution (y,p;, P;) to (3.3) satisfies

y(T;y,T2) =0in (0,1), P-a.s.,

with minimum cost. In other words, (u,us) € § minimizes the following cost func-
tional J, that is,

J(ﬂl,ﬁg): min J(UhUQ),
(u1,u2)€F

where

F={(u1,u2) € Ur|y(-, T;u1,uz) =0in (0,1),P-a.s.,
y(+,;u1,uz) is the solution to (3.3)}.
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In order to accomplish the above goal, we establish an observability inequality for
the following coupled forward-backward equations (i = 1,2), which are the adjoint
equations of (3.3):

(3.4)
—dz — (2%2,) dt = [a12 + a2 Z + a1q1 X0, + 02¢2X0,
oy (x%ql@)xxél . (a:2aq2,z)$x(52]dt+ ZdW (t) in Q,
dg; — (2%gi.2) ,dt = (a1¢; — iZXGi)dt + agq;dW (t) n Q,
2(0,t) =¢;(0,¢) =0 if0<a<l,
n (0,7,
(2°22)(0,t) = (2°¢i2) (0,8) =0 if 1< <2
z(1,t)=¢;(1,t)=0 on (0,7),
2(x, T)=zr(z), ¢(x,0)=0 in (0,1).

Similar to the discussion in [23], by constructing appropriate variational problems, it
can be proved that the required pair of leaders exists if and only if the solution to
(3.4) satisfies the following observability estimate.

THEOREM 3.2. For i = 1,2, under the condition of Theorem 2.1, there exist a
positive constant C, only depending on Gy, G;, O, O;, T, o, oy, and p;, and a weight
function p? = p?(t) blowing up at t =T such that for any 2 € LZ(Q, Fr, P; L*(0,1)),
the following inequality holds true for the solution (z,Z,q;) to (3.4):

(3.5) / dx+ZE/ (@ += q”)dxdthE/ (z*xc, + Z?)dxdt.

Q

In order to prove Theorem 3.2, we need to establish some estimates for (3.4)
in Case 1 and Case 2, respectively. First, the known Carleman estimates [18] for
stochastic degenerate parabolic equations are given.

Consider the following one-dimensional forward stochastic degenerate parabolic
equation:

dy — (zy,) dt = fdt + gdW (t) in Q,
(Ot)z() ifo<a<l,
(3.6) ( Yo ) _ fl<a<? n (0,7),
y(1,1)=0 n (0,7),
0) =yo(x) in (0,1),

y(z,
where yo € L?(0,1), f € L2(0,T;L?(0,1)), and g € L2(0,T; HL(0,1)).
Let d(-) € C*([0,1]) be a function satisfying d(z) > 0 in (0,1), d(0) = d(1) = 0,
and d;(z) # 0 in [0,1]\w, where w is a nonempty subset of (0,1). And, for A,s > 0,
introduce the weight functions

. Oz, t) = @D (e t) =~ (t)p(x), ()= ﬁ
3.7 e
P(z) = f(x)2(2—7a)2 + [1 — f(g;)} (@25\5”0([0,1]) _ ESd(fﬂ)) ,

where & € C*°(]0,1]) satisfying that 0 <& <1in [0,1], £&(z) =1 in [0,2}], and &(z) =
n [22,1], 0 < 2! < 2% < 1. Then, from the known Carleman estimate result (see
Corollary 2.1 in [18]) for the forward equation (3.6), we have the following lemma.
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LEMMA 3.3 (see [18]). For any positive integer k, there exist two positive con-
stants s, and A\, depending only on k, a, Gy, and T, such that for the s > s, and
A > A, the solution y to (3.6) satisfies
]E/ 92 ()\3+k,y3+kx2—ay2 +)\1+k,yl+kmocy2) dl‘dt
T
Q
gC(s)E/ Akykg2 ()\373?]2)(60 F 2 A2 g2 _’_)\7392 +9€O‘gi) dadt
Q

for any yo € L?(0,1).

Consider the following backward stochastic degenerate parabolic equation:

dh+ (z%h,) dt = (fi + fo.)dt + HIW(t) in Q,
h(0,t) =0 if0<a<l,
(3.8) { (z%h,)(0,t) =0 if1<a<2 on (8.7,
h(1,t)=0 on (0,7),
Wz, T)=hr in (0,1),

where hp € L2(Q, Fr,P; L?(0,1)), fi1,2~ % fo € L2(0,T; L?(0,1)).

By the classical well-posedness result for stochastic evolution equations [22], for
any hr € Li(Q,Fr,P;L?(0,1)), and fi, 272 fo € L3(0,T;L3(0,1)), (3.8) admits a
unique solution (h, H) € H x L2(0,T;L?(0,1)).

There also is the following lemma for the backward equation (3.8) from the known
result (see Theorem 1.3 in [18]).

LEMMA 3.4 (see [18]). There exist two positive constants s4 and Ay, depending
only on a, Go, and T, such that for any s > sq4 and X\ > A4, the solution (h,H) to
(3.8) satisfies

E / 0% (X732 *h® + Mya®h?) dxdt
Q
<C(s)E / 0% (N hPxa, + [T+ N2~ f3 + NP H?) dadt
Q

for any hr € LA(Q, Fr,P; L*(0,1)).

Now, we are in a position to give some estimates for the solution of (3.4) in Case 1
and Case 2, which are the key to proving Theorem 3.2.
_ Case 1: O1 = Oy and O1 = Oz. In this case, we denote O £ 0, = Oy and
O £ O, = O,. From the condition @ N Gy # () in Theorem 2.1, we know that there
exists a nonempty open subset w of (0,1) such that w CC ONGp and wN O =0.
Put n = a1q1 + asqe. Then, (z,Z,7) is the solution of the following coupled
equations:

—dz— (mu‘zz)mdt:[alz—i—nx(g— (gcQO‘nx)xxé—&—agZ] dt+ZdW(t) in Q,
dn— (m“nx)xdt:[am— (%XGl + %X@Z)z] dt+asndW (t) in Q,

3.9 2(0,t) =n(0,t)=0 ifo<a<l,

(3.9) { (2%25)(0,8) = (2°15)(0,8) =0 if1<a<2 on (0,T),
2(1,t) =n(1,t)=0 on (0,7),
z2(x,T)=zp(x), n(x,0)=0 in (0,1).

From Lemmas 3.3 and 3.4, we have the following result.
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PROPOSITION 3.5. There exist two positive constants s and ss, depending only
on o, Go, T, such that for any A\ > A5 and s > s5, the solution (z,Z,n) to (3.9) satisfies

E/HQ()\332 a2+)\55 2— (12_’_)\71; +)\3’73$a’l]2>dl‘dt

(3.10)

< C’E/ 6> ()\g'ygx(yzQ + )\2'y2Z2)dxdt.
Q

Proof. See Appendix B for the proof.

Case 2: 01 # Os. In this case, we distinguish two cases for O; and Q3. On the
one hand, if O; N Oy N Gy = (), then we can choose two nonempty open sets w; and
wy satisfying

(3.11) w; CC (OiﬂG0)7 w1 QWQ:(Z),
and
(3.12) w1 N(02NGo) =0, waN(O1NGo)=0.

This implies that for i = 1,2, there exists a nonempty open subset O; of (O; N Gy)
such that w; C 0}, O}, N O; =0, and O N O; = (. On the other hand, if (O; N Go) N
(O3 N Goy) £ 10, then we can choose wy and we satisfying (3.11), and

(313) w1 N (OQ n Go) = @, wo C (Ol N Go)

This implies that there exist two nonempty open subsets O3 C ((O1 N Gyp) \ O2) and
Oﬁl - (01 NOyN Go) such that w; C Oé, Oé NO; = Q], wo C Oi, and 021 NO; = 0.

Similar to Lemma 3.3, in order to apply Carleman estimates to the solution of
(3.4), we need to introduce some weight functions of the form like (3.7). To do so, for
i = 1,2, from the condition O; NGy # ) in Theorem 2.1, we know that there exists
a nonempty open subset Gy CC Gy such that O; N Gy 7& 0. Let d;(-) € C*([0,1]) be
functions satisfying d;(x) >0 in (0,1), d;(0) =d;(1) =0, d; »(z) # 0 in [0,1]\w}, and
dy = dy in [0,1]\Go, where w} C w;. Then, analogously as in (3.7), we can define the
following weight functions:

(3.14)
;= 0N 6 (2) = (a)

9 g2«
ﬁ + [1 — f(ﬂ?)] (eQS\dHc([o,l]) _ esd,(z)) 7

where v and & as in (3.7).
Introduce the following notations:

d= min {61(z), 62(2)}, 5(0)=7(0)3, ()=,

6= max {61(2),62(v)}, 5(H)=7(1)), b(t)=e
Then, we have the following result.

PROPOSITION 3.6. There exist two positive constants \¢ and sg, depending only
on «,Go, T, such that for any A > Xg and s > sg, the solution (z,7Z,q1,q2) to (3.4)
satisfies

(3.15)
E‘/Qé2p\2 3 2 « 2_’_,}/2, _,_)\4 4 2’a(q%+q§)+A272xa(qix—|—q%$)]dmdt

<CE / 02 (N33 22X Gy + M2 Z2)dadt.
Q
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Proof. See Appendix C for the proof.

Remark 3.7. Because (z2*1,).xg in the drift term belongs to a Sobolev space
of negative order in the first equation of (3.9), we need to use the Carleman estimate
by a duality method (Lemma 3.4). The Carleman estimate derived by the weighted
identity method is not applicable here.

Remark 3.8. From the proofs of Propositions 3.5 and 3.6, we know that different
Carleman estimates lead to different conditions (H;) and (Hz) on the coefficient aq,
respectively. These conditions mean that as needs to have a bounded weak derivative
or suitable singularity.

When dealing with a degenerate problem, a Hardy-type inequality is a very useful
tool that will play a crucial role in the proof of Theorem 3.2.

LEMMA 3.9 (Hardy’s equality [5]).
(i) Let 0 < a < 1. Then, for all locally absolutely continuous function y on (0,1)
satisfying

1
lim y(z)=0 and / y2dr < +oo,
z—0t 0

the following inequality holds:

1 1
4
(3.16) / xa_2y2dx§7/ ry2dr.
0 (1-a)?Jo

(ii) Let 1 < a < 2. Then, the above inequality (3.16) still holds for all locally
absolutely continuous functions y on (0,1) satisfying

1
lim y(z)=0 and / ry2dr < 4-o00.
r—1— 0

By Propositions 3.5-3.6 and Hardy’s equality, we now give the proof of Theo-
rem 3.2.

Proof of Theorem 3.2. We only prove Theorem 3.2 in Case 2, and Case 1 can be
proved in a similar way. Let us introduce an auxiliary function ¥ € C*([0,T]) with

Y=1in[0,Z], =0 [, 7], and [,(t)|< S in[0,7],
and choose a function ¢ = /() satisfying (2.4). Then, by the first equation of (3.4)
and d(v2z?) =, 22dt + 2¢zdz + 1)(dz)?, it follows that

1 !
/ 22(0)dz + ]E/ / (222 + Z°%)dxdt
0 o o Jo o
<CE / / (z°¢7 . + 263 , + ¢i + ¢3)dadt + CE / / Z*dadt.
0 0 T Jo

2

By Lemma 3.9, it can be deduced that
1 T n
/ 22(0)dx + ]E/ / (1:270‘22 + 22 42222 + Zz)dxdt
0 o Jo

L1 Lo
< CE/ / (2°¢; , +2°05 . + ¢ + ¢3)dadt + CE/ / Z2dxdt.
0 0 ’ ' z Jo
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Analogously as in (3.7) and (3.14), define the weight functions o*(t) = £(t), 6% (t) =
e~2?"() Then, using the fact that 6* and ¢ are bounded in [0, %], one can get that
(3.17)

1
/ 20 dx—l—E/ / 02 (NP2 2% + la%z —I—)\€2Z2)dmdt
<CE/ / (z qux—i—xaqzz—&—ql +q2 dxdt+CE/ / Z2dxdt.

By the second equation of (3.4) and It6’s formula, one can obtain that

1 7l
/ / g+ dmdtSC—QE/ / Z2dadt.
e 0 0

By Hardy’s inequality, since £(t) = T8 and (6*)~1 = MBS < (OX i [0, Z], it follows
that

/ / 2%q} , + 2765, + ¢f + ¢3)dwdt
( 5 + 2) E/ 02 (N232% 2% + (2”22 ) ddt.
Hi o M3 Q

For sufficiently large p1, pto > 0, the above inequality together with (3.17) implies that
(3.18)

1
/ %(0) dm—HE/ / 02 (N20327 2% + (22 + AP Z?) dzdt
L o
< C’E/ / x® qu + xaqzw +qi + ¢35 )dadt + C’E/ / Z2dxdt.
z 0
Since 0*(t) = 0(t) in [, 7] and £(t) = y(t) in [£,T], we can obtain that
T 1
E / / 0*2(N20P2*~ 2% + M?Z?)dadt < CE / 0% (\29322 7222 + M2 Z%) dadt.

3 Jo Q

Combining the above inequality with (3.15), (3.18), one can find that there is a Ag >0
such that for all A > Ag, it holds that

1
/ ?(0)dz +E / 0*2 (NP2 2% + M Z%)dadt
0
3T

3T
4
<C’IE/ / x qlir:E ngchq1 +q2)d:cdt+C]E/ / Z2dxdt
(3.19) z Jo

—|—CE/ 0% (NP2 2% + M2 Z?%) dadt
Q
< CE/ 62 (As'ySXGOZQ + /\’yQZQ)dxdt.
Q
In what follows, fix A = A in (3.19). Set p(t) = e’ ®). Then, p= p(t) is a positive

nondecreasing function in C'(]0,1]) that blows up at t = T.. By the second equation
of (3.4) and Itd’s formula, for i =1,2 and t € [0, 7],

d(ﬁ‘2q?)—ﬁ‘2(dqi)2=2ﬁ‘2q¢{(fﬂ“qznz);ralqz'— dt+2p 2 agq; dW(t)+(p~2)sq] dt.

i
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Since g;(x,0) =0 in [0,1] and (p~=2); <0 in [0,7], we know that

1
E/ 2(t)q( dx+E/ / 5 2q? xdxds<C’]E/ / <qZ QX(;)dxds.
0

From Gronwall’s inequality and 0 ¢ G;(i = 1,2), it follows that

]E/ ,572(q1-2—|—x"qi2’m)dmdt§ %IE/
Q

p 22 xq,dxdt < CIE/ p2x? 22 dadt.
Ky Ja

Q

Noting that p=2 = 6*2, by the above estimate and (3.19), one can get

/ derZIE/ q +x q”)dxdt
1
< / z*(0)dz + CE / 0*22°~“z*dadt < CE / 0% (\57°2* X, + Aoy? Z7) dzdt.
0 Q Q

This gives the desired estimate (3.5). d

4. Inverse problem. This section is devoted to studying the inverse problem
of (1.1) under a Nash equilibrium strategy. We consider the inverse problem for the
following stochastic degenerate parabolic equation:

dy — (2°ys) At = (a1y + vixa, + v2xa,)dt + aydW(t)  in Q,

= if 0 < 1
y(0,£)=0 1 0<a<l, n (0,7),

(2%Y2)(0,6) =0 f1<a<2
y(1,t)=0 on (0,7,
y(z,0) =yo(x) in (0,1),

where yo € L2(0,1). From the conclusion in Theorem 3.1, the pair (v1,72) is a Nash
equilibrium if and only if
_ 1 )
Vi = ——DPiXGy> i=1,2,
i

where (y,p;, P;) is the solution of the coupled stochastic forward-backward equations,

dy — (zy.) ,dt = (a1y — B xa, — B2xq,)dt + agydW(t) in Q,
—dpi = (2°pix) ,dt = [a1pi + a2P; + ai(y — ¥} )xo,
— (2, — xo‘yiﬁrz)wx@] dt + P,dW (¢) in Q,

(41) y(0,t) =p;(0,t) =0 ifo<a<l,
{ (J:O‘ym)(O,t) = (xo‘pi7x)(0,t) =0 fl<a<?2 n (0.7),
y(lvt):pi(lat):() on (O7T)a
y(z,0) =yo(z), pi(z,T)=0 in (0,1).

In this part, in order to study the inverse initial value problem, we get the interpo-
lation inequality (2.5) for the solution of (4.1) by some Carleman estimates. Carleman
estimates are a class of energy estimates with exponential weights, which can be used
to study the uniqueness, controllability, and inverse problem of the deterministic and
stochastic partial differential equations. We refer to [7, 10, 12, 17, 21, 30, 35] in this
respect.
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First, we establish the following global Carleman estimate for the forward sto-
chastic degenerate parabolic equation (3.6).

THEOREM 4.1. There exist two positive constants A\, and s such that for all
A> X and s> sy, the solution y to (3.6) satisfies

(4.2)
IE/ E (s)\2y2 + Azy? + 3/\g2)dxdt
Q

<C [IEI /0 1 (52(T)5Ay2(T) +§2(0)xay§,(0)) dx +E /Q 02 (% + 2°g?)dudt |,

where § = e, o= e)‘lz, and 1F/;(t) =t.

Proof. See Appendix D for the proof.

Next, we establish Carleman estimates for the backward stochastic degenerate
parabolic equation (3.8) by two different methods. Based on a weighted identity for
the backward stochastic degenerate parabolic operator, one has the following Carle-
man estimate with diffusion terms in L?(G)-space for (3.8).

THEOREM 4.2. Assume that fo =0 and hy = 0. Then, there exist two positive
constants Ay and so such that for any A > Ay and s > sa, the solution (h,H) to (3.8)
satisfies

(43) E / 62 (sN2h? + Az®h2 + sAH? + 2 H2)dzdt < CE / 62 f2dudt.
Q Q

The proof of Theorem 4.2 is similar to that of Theorem 4.1 and thus is omitted
here. In fact, the proofs of both Theorems 4.1 and 4.2 are similar to that of Theorem
1.1 in [20].

By a duality technique and Theorem 4.2, another Carleman estimate for (3.8)
can be established with diffusion terms in a Sobolev space of negative order.

THEOREM 4.3. Assume that h0 = 0. Then, there exist two positive constants A3
and sz such that for any A > A3 and s > s3, the solution (h, H) to (3.8) satisfies

(4.4) E / 62 (sX2h? + \z®h2 + sAH?)dxdt < CE / 62 (f2 + sha® f2) dudt.
Q Q

Proof. See Appendix E for the proof.

Remark 4.4. The Carleman estimate (4.4) is different from the result in [18].
On the one hand, the weight function 6 is independent of the space variable, and
the terminal data is needed to be 0 in (3.8). On the other hand, there is no local
information about the solution and the diffusion term on the right-hand side of (4.4).

Now, by Carleman estimates (4.2) and (4.4), we are in position to prove Theo-
rem 2.6.

Proof of Theorem 2.6. Choose a cut-off function ¢ € C'*°([0,T7;[0,1]) such that
¢(t)=1in [t1,T], and ¢(¢t) =0 in [0,¢2], where 0 < to < t1 < tg. Set z =gy, r; =<p;,
and R; = ¢P; (i = 1,2). Then, by means of (y,p;, P;) solving (4.1), we know that
(z,7i, R;) is the solution of the following equations:
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dz — (xazw)wdt =(a1z — iﬁXcl - iMXGg +Gy)dt
+azzdW(t) in Q,
7d’l"i - (l‘a’f‘z7@)xdt:El(’f‘z,R“y)dt+RZdW(t) in Q,
(4.5) 2(0,t) =7;(0,£) =0 if0<a<l,
on (0,7),
(2%25)(0,8) = (2°1i5)(0,8) =0 if1<a<2
z(1,t)=r;(1,t)=0 on (0,7),
2(x,0)=0, ri(z,T)=0 in (0,1),

where By (ri, R, pi,y) = arri+as Ri+pi +sai(y —y; ) xo, —sai(2**y, — Y 1 0)a X5,
Applying Theorem 4.1 to the first equation of (4.5) gives

(4.6)
E/ 62 (sA?2% 4+ Az22)dzdt
Q

1
< CIE/ 0? (zg—i—rfxgl—l—rgxgz+§t2y2+x°‘z§,)dxdt+CE/ sAO*(T)22(T)dx.
Q 0

Applying Theorem 4.3 to the second equation of (4.5), it holds that

(4.7)
B [ R0 +03) + 0 73 + AR + B ot
Q

SCE/ 0%[r +73 4+ RY + R3 + 2 (0] +13) + (v + vi*xo, +¥3°X0s)

Q
+ s x%c? ($4O‘y§ + xQ“y§2x(51 + x%‘yfx@z)] dadt.

By the definitions of ¢ and 5, one can see that
IE/Q ggcf (s/\y2 +pi +p§)dxdt
<CE /tl /O1 62 (sXy? + p} + p3)dadt < 052(151)1@/62 (sAy? + pi + p3)dadt.
ta
This together with (4.6) and (4.7) implies that for a sufficiently large A >0,
E/Q 0262 [sA2(s\y? + p? + p3) + Ax® (sAy2 + pl, +pd,) + sA(PE + P3)]dadt

= E/ 62 [sA2(sA2® + 7] +73) + Az®(sA22 + riz + r%z) + sA(R} + R3)|dzdt
Q

< CH(t)E /

1
(sAy® + pI + p3)dzdt + CO*(T) (E / $2\2y2(T)dz + M) ;
Q

0

where M =E [, (yi*xo, +y3*x0, +2**y3*x5, + 2°*yi*x5,)dzdt. From the above
inequality, one can see that

T 1
E/ / [sA2(sAy® + P} +p5) + Az (s\ys + DY, + 3 .) + sA(P} + P3)]dadt
to 0

1
<CO2(t)0%(t))E / (sAy?+pi+p3)dadt+CO°(T) <IE / 52)\2y2(T)dx+M).
0

Q
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By means of d(y?) =2ydy + (dy)? and the first equation of (4.1), we obtain
1 1 T 1
E/ y*(to)dx :IE/ y3(T)dx — E/ / [2ydy + (dy)*]dz
0 0 to Jo

1 T 1
< IE/ y?(T)dz + C’IE/ / (g;ayfc +32 +p2xa, +p§XG2)dmdt_
0 to JO
Then, for any s > 0, it holds that
6%(t1)

1 1
IE/ Y (to)dz < C= E/ (sAy?+pi+p3)dadt+CO*(T) (IE/ 52)\2y2(T)dx+M>.
0 0%(to) JQ 0

Now, fixing A = A\, from the above inequality, we have

1 1
B [ yP(t0)de < CE [ 7 (424t ) o € (E i yQ(T>dx+M) .
0 Q 0

Choosing an s > 1 as a minimizer of the right-hand side in the above inequality. Then,
we get

1 K 1 11—k
IE/ y2(t0)dx§C{E/ (y2+p§+p§)dxdt] <IE/ y2(T)da:+M) ,
0 Q 0

eAT

where k = ey s s

This completes the proof of Theorem 2.6. ]

5. Summary. This paper considers controllability and the inverse initial prob-
lem for stochastic degenerate parabolic equations under a Nash equilibrium strategy,
which are combinations of game theory with controllability and the inverse problem,
respectively. The characterization of the Nash equilibrium is given, and the ori-
gin equation (1.1) can be transformed into the coupled stochastic forward-backward
equations (3.3). By Carleman estimates, the hierarchical controllability of the coupled
stochastic equations is proved, and the uniqueness of an inverse initial value problem
is obtained under the condition of terminal observation and the given goals.

It will be interesting to further consider the following problems:

(i) the optimal control problems with endpoint/state constraints for the Nash
equilibrium,

(ii) the Stackelberg—Nash type controllability problem for stochastic hyperbolic
equations,

(iii) the inverse source problem for stochastic partial differential equations under
a Nash equilibrium strategy.

Appendix A. Proof of Theorem 3.1. We use the Lax—Milgram theorem
[4] to prove the existence and uniqueness of a Nash equilibrium. For ¢ = 1,2,
introduce the spaces U; = L2(0,T;L*(G;)),Uz = Uy x Us. Define the operators
I, L; € L(U; L2(0,T; L2(0,1))) (i=1,2) as
Livi=9y; and Ly, =2 4,

where y; is the solution of the following equation:

dy; — (xagi,z)xdt = (algi + UiXG,)dt + agﬂidW(t) in Q,
7:(0,t) =0 ifo<a<l,
(A1) o . on (0,T),
: (2°7,)(0,8) =0 if1<a<2
yi(1,t)=0 on (0,T),
Yi(z,0)=0 in (0,1).
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Then, the solution y to (1.1) can be written as y = L17; + LUz + 8, where 3 solves

dB — (2°B.) At = (a1 8 + u1xc,)dt + (azl +ug)dW(t)  in Q,
= if
3(0,t) =0 0<a<l, o (0.1,
(2°B:)(0,6)=0 ifl1<a<2
B(1,t)=0 on (0,7),
B(x,0) =yo(x) in (0,1).

By the definitions of J; and Ja, the pair (T1,72) € Us is the Nash equilibrium if and
only if, for any v; €U;, i=1,2,

(A.2) IE/ [i(y = y)Tixo, + @i(2Ye = Yi12)2 Vi wX s, + Hivilixe, | dedt =0,
Q
that is,
E/ {Ozi [Llfl + Lovy — (y:< — ﬁ)] Lz"UiXOi, + o [1151 + 15Uy
Q

T
_ (y;"+2 — l'aﬂz)]IiUiX(a }dxdt + ]E/ / w;v;v;dedt = 0.
¢ 0o Ja,
Hence, for all v; elU;, i =1,2,

;i (Li (L1014 Lava — (y; — B))x0,),vi)
+oi (I (101 + 1o — (Y0 — 2% B2)) X, ) vi) + 1 (Tixa,» vi) =0,

i

where L}, I7 € L(L%(0,T; L*(0,1));U;) are the adjoint operators of L;, I;, respectively.

177

This implies that (71,72) is a Nash equilibrium if and only if

o; L; (L1701 + LaTa)x0,) + il (11701 + IaU2) X5 ) + piti
= o Li ((y7 = B)xo,) + aili (Y72 — 2Ba)x,), i=1,2.

Let us introduce the operator M € £L(Us;Us), with

M (v1,v9) = (alLT((L101 + Lava)xo,) + a1l (111 + Izvz)Xal) + pivi,
az L3((L1vr + Lava)xo,) + ao I3 ((Tvon + Iav2)Xg,) + pav2),

for all (v1,vq) € Us, and define the functional b: Us x Uy — R as
b((v1,v2), (01,02)) = (M (v1,v2), (01,02)) . ¥V (v1,02), (01,02) € Ua.

Then, one can see that b is bounded and coercive. Applying the Lax—Milgram theorem
[4], there is a unique solution (v1,ve) € Uy satisfying the equation M (vy,v2) = U, where
U= (a1 Li((y1 — B)xo,) +onli (5 — 2°B:)xs,),
a2 L3((y5 = B)xo.) + a2 I3 ((y5 — 2°Bs)x,)) € Ua-
Next, we give a characterization of a Nash equilibrium. Introduce the following

backward stochastic degenerate parabolic equation which is the adjoint equation of
(A.1):
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—dpi — (2pi.2) At = [a1pi + a2 P; + ai(y — yi )Xo,
_ Oéi(xzaym — xay::,_Q)mX@l]dt -+ RdW(t) in Q,
(0,8)=0 ifo<a<l,
(A.3) pi(0,1) on (0,T),
(2°pie)(0,6)=0 fl1<a<2
pi(1,t)=0 on (0,7),
pi(2,T)=0 in (0,1).

From (A.1) and (A.3), we have

T
B / [(y = v))Tixo, + (2°Yz — Yi12)2 Vi w X, | drdt =E / / pividadt.
Q 0 JaG;

Combining the above inequality with (A.2) gives

T
E/ / (pl' + ,uﬁi)vidzdt =0 WYu; €elU.

This implies the desired results (3.2) and (3.3). d

Appendix B. Proof of Proposition 3.5. Applying Lemma 3.4 to the first
equation of (3.9) leads to

(B.1)
IE/ 02 (N33 2% 4 Myx®22)dadt
Q

<CE|[ 6? [)\3’)’3Xw22+ 24+ n’xo+ )\27237_“(:102“7796)(5)2—# )\272Z2] dxdt.
Q
By Hardy’s inequality, when o # 1,
B.2) E [ 6%22dzdt<E [ 622°222dadt <CE [ 6*(2“2% + \24%22222)dzdt,
© Y
Q Q Q

and when a =1,

E/ 92z2dmdt§E/ 92x_%22dxdt§CE/ x%(ﬁz)idxdt
Q Q Q

(B.3) < C’E/ %(02)2dxdt < CIE/ 02 (%22 + N2y222 2% dadt.
Q Q
Combining (B.1)—(B.3) indicates that for a sufficiently large A > 0,

E/ 02 (N33 22722 4 Ay 22 )dadt
(B.4) Q
< C]E/ 62 ()\37322%» +n%xo + )\2723:30‘1735)(5 + )\2'72Z2)dxdt.
Q

We can prove the inequality (3.10) under the condition (Hz) by Lemma 3.4. With-
out loss of generality, we assume that (H;) holds. Applying Lemma 3.3 to the second
equation of (3.9), one can find that

E/ 62 \3~3 ()\2721‘2_0‘772 +x°‘n923)dxdt

(B.5) @ o V2

< C’E/ 02222 | X332y, + (Xgl + XGz) 22| dadt.
Q M1 H2
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Because G;(i = 1,2) are the control areas, we can assume that 0 ¢ G,;(i = 1,2). By
(B.4), (B.5), and Hardy’s inequality, it follows that for sufficiently large A > 0,

]E/ 6> ()\37333270‘22 + X522 4 Ay 22 4 A3’y3x°‘ni)dxdt
(B.6) Q
<CE / 0% (X220 + A0 xw + A2 Z%) dadt.
Q
In the following, we will give an estimate of ]EfQ 02 X\°~5x,n?dxdt. To do so,

choose a function ¢ € Cg°(R) satisfying that 0 < ((z) <1, supp( C O, ((r) = linw,
|§—i| <C, |C:—f\ < C, where O is an open set satisfying w C O', O’ C O N Gy, and
2 2

O’ N O =1. Then, by Itd’s formula, we have
O:IE/ d(CO* Ny nz)de
Q
= E/ C92)\575{77 |:_ (xazm)x_ 12— 77X0+ (xzanz)xX@_ GQZ] +a2772
Q
a (% Q2 25,5
(B.7) +z [(a: nw)z—i— ain <M1 XGy T s XG2> z}}dxdt—&—E/Q(CH A%y )tnzdxdt
= IE/Q [(492)\575)#72— (C92A575)mnxo‘z— (C92A575)m (2nzxaz+n(xo‘)zz)
— COPX ) — (6P N°° (alXGl + a2><c2> Zz}dxdt.
125} H2
Hence, by Holder’s inequality and Hardy’s inequality, for any ¢ > 0,
E / CO2N30 [n2 + (ﬂxcl + %xgz)zﬂ dadt
Q 125} H2
= IE/Q [(CGZ)\E’VE’)tn - (C02)\5'y5)mnxa — (492)\575)30(2%%& + T](xo‘)@)} zdxdt
< CIE/Q 62 [C()\777|17xa2| + A8 n2® 2| + A48 |22, | + )\677|77z\)
+ |Gl (>‘6’76|7737az| + )‘5'75|77$a_1z| + )‘575|2xa7h|) + |Cm|/\575|7737°‘2|} dxdt
1
SCE/ 62 lC(€)\575772 + 7)\9,)/922 _"_6/\5,}/5%,2—04,'72 +€A373xang)
Q €

2 ¢? s
+ 6?1/\37336@772 + —Z)\Q’yng + Lg)\gfyng dzdt.
€ €

Combining the above inequality with (B.6) gives the desired inequality. 0

Appendix C. Proof of Proposition 3.6. Choose a function A € C*([0,1])
such that 0 < A(z) < 1in (0,1), A(z) = 0 in Go, and A(z) = 1 in (0,1) \ Go. Let
Z=Az and Z=AZ. Then, (z,Z) is the solution of the following equation:

—dZ — (2°%;) At = [a1Z + crq1 Axo, + a2g2Ax0, — (1AZ**q14) X5,
(C.1) +012” AaqaXp, — (02807 022) X5, + 022" Moo X5,
—2(x%Ag2) e + (x%Ag) 2z + agZ] dt + ZdW (¢).
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Applying Lemma 3.4 to (C.1) with weight function 61, it holds that
E/ 6? ()\373;10270‘22 + )\'y:vo‘?i) dxdt
Q
< CE/ 07 [N X, 22+ 22+ A2 (q] + g5 + N2 (0] o + 630))
Q ~ ~
+ 3" A2(q] . + @3 5) + NPV TAZZE + (20,227 + 27 + NP y2 2% dadt.
Similar to the proof of (B.2) and (B.3), by Hardy’s inequality, we have that
E / 02yZ*dzdt < CE / 03y (N2y22®~ 2 + 922 ) dadt.
Q Q
Then, for a sufficiently large A >0,
/ 07 (\*y32° 2% +4Z2%)dadt < CIE/ 03 (Ny32% 2% + y2z2 ) dadt
Q Q
< CIE/Q92 [Az 28X (@ + 63+ X N(dl , + 05.0))X (010G
272 2 a2
+ M Z X(0,1)\Go + Ay x®z XG0\50:| dadt.

By the definition of A and w; C Gy, one can see that

IE/ 02 (X232 2% 4 y22)dadt

<CE/ 92 )\27322‘%2 aXGo+722XGo+)\273Z2Xw1+>‘72xaz2XGo\éo
(@ + 6+ M (@ + 60) + M 20X 00, ) dedt
<CE /Q 07 [N 2 Xt (@ + 8 +27°2% (@} o+ 65.)) X 0.1\ &, + X7 Z7] dadt.

Here, we also assume that (Hj) holds. If (3.11) and (3.12) hold, then for i =1,2,
applying Lemma 3.3 to the second equation of (3.4) with weight function 6;, one can
obtain that

/92)\2 2P 4+ 2 qw)dxdt

1
gCE/ 07 \y <)‘373qz‘2Xw+M22 xa, Ayt 2+)\7 @Gt q%m) dzdt.
Q

Choosing a sufficiently large A > 0, Ef ?(N3y3x27g? + )\’yscaqiw)dxdt can be ab-
sorbed by the left-hand side of (C.3). In the following, we give an estimate on
E | 0 912/\274% dzdt. By Holder’s inequality, for any € > 0,

]E/ GEA%%qfdxdt:E/(GEA%V%:E”T”%)%(QQXL 4223 dgdt
Q

(C.4) s e
SEE/ 91-2)\4'y4x2*aq1-2dxdt+CE/ GfA%'ygx%qfdxdt.
Q Q
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Further, by Hardy’s inequality, when o # 1,

E/ QEA%W%z“T”qfdzdth/ 0273~ 22 2¢2dzdt
Q Q

4 5

SC]E/ /\%'ygxo‘(ﬂiqi)idxdth]E/ ( Aindy 02q1x+)\%’y%xa93qf) dadt,
Q Q
and when =1,

E/ 02 N335 qzdxdtf]E/ 02\3~3 273 g2dadt
Q Q
gCE/ )\%fy%x%(eiqi)idxdtg(]l@/ A3 5 2% (0;¢;) 2 dadt
Q Q
SC’E/ )\%'y%xaefqixdxdt—i-C]E/ )\%v%maﬂqudxdt.
Q Q

This together with (C.3) and (C.4) implies that

2
/92)\2 2 )\2 e 4 qm)dxdtSCE/Q?)\'y ()\373q1-2xwi+22xgi> dzxdt.
Q i

Summing (C.2) and (C.5), by Hardy’s inequality and 6, =65 in ((0,1) \éo) x (0,7),
we find that for a sufficiently large A >0,

/ [GZ(AZ 3 2 a 2 )\4 4 2 a 2 )\272xaq%x)+0%yz2
Q
+0§(>\4 4 2—« 2+)\2,y2xaqu)]dxdt
1 1
< C]E/ [0% ()\27322)(@0 + 272+ (2 2) Myz? 4 Ayt q%xwl)
Q KT M3
+03(Myz%xa, + Vv“quw)} dzdt.
This implies that for sufficiently large p1, s >0 (such as pq, o > A),

(C.6)
07 (N2 2% + N0 + Ny, +2°)
+ 05 (MYt s + )\Q’nyaqgw)]dxdt
< CE /Q [\t 4(91qlxw1+92q2xw2) (03N +0507) 2% X+ 0T A2 2% dadt.

In order to estimate the terms E [, ANy (02¢P 1w, + 02¢3Xw, )dzdt, for i = 1,2, we
choose a function & € C§°(R) satlsfllng that 0 <& <1, supp; € Oj, and §; =1 in
wi. Then, from O] N Oy =0, O] NO; =0, O,NO1 =0, and O N O; = @, similar to
(B.7), for any € > 0, we have

E/f)?x*v 4 X dwdt<C1E/92 X822 o+ Iy et g +eX?y e qF ) dadt.
Q
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From (C.6)—(C.7) and O] C Go(i=1,2), it holds that
E/ [02(A29202 022 4 Niyda202 4 \2922002 | 1 2?)
Q
(C.8) + 03Ny 2G5 + N yPa%qs ) | dadt

< CIE/ [0T(A3Y® 27X,y + M2 Z2) + 03039822y, | dadt.
Q

If (3.11) and (3.13) hold, then, by applying Lemma 3.3 to the second equation of
(3.4) with weight function 61, one can obtain that

(C.9)
2
E / RNV (NYa® i +aq] ) dedt <CE / 07 Xy <A3v3<ﬁxwl+ Zﬂcl) dzdt.
Q ' Q M1
Similar to (C.7), choosing a function &3 € C§°(R) such that 0 < &3 <1, suppéz C Oy,
and {3 =1 in wy, noting that Of C (01 NGy) \ O2) and O N O; =0, we have

(C.10)
E/Gf/\474qfxwldxdt§CE/0f (/\87822xgo+ez\4fy4x2_o‘qf+6)\272m°‘qix)dxdt.
Q Q

E
Q

From (C.9) and (C.10), one can get that
OIN*Y? (N*y°2 g7 + xaqiz)dmdt < C’]E/Q 0? ()\S'ygxgo + Z\ZXG1> Z2dadt.
1
This together with (C.2) indicates that for a sufficiently large w1 > 0,
IE/ 02 (N2y322722% 4 2% 4 Ayta?mogd + )\2729:aqim)dxdt
(C.11) Q

< C]E/ 03 [N3v%2%xc, + M Z% + (65 + A72x3aq§7m)x(0 1)\G, ) dadt.
o :

To estimate the last term of (C.11), we borrow some ideas from the proof of Propo-
sition 3.5. Let n=a1¢1 + @ag2. Then, one can obtain an estimate similar to (B.5),

IE/ 037%* (N2 y*2 "0 + 2% ) dadt
Q
o Q 2
< CE/ 03Ny {)\S’ygnQsz + (*1)((;1 + ixcz) 22} dxdt.
Q M1 H2
Similar to (C.7) and (C.10), choosing a function §4 € C§°(R) such that 0 < & <1,

supp&y C O}, and & =1 in ws, noting that O} C (01 N O N Gyp) and Oy NO; =0, we
have

]E/ 02\ 0 X, dadt < C’E/ 03 (/\87822xgo + eyt 4 e)\Q’yzxani)dxdt.
Q Q

Then,

2
E/GS/\Q’VQ ()\272132_0‘772—%960‘77%)dxdthE/Hg [Agfyszzxgo—&—)w (314—22) zﬂ dadt.
Q Q 1 M2
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Combining the above inequality with (C.11), from 6; =65 in ((0,1) \éo) x (0,T) and
|b]? <2(|al? + |a + b]?), it follows that for sufficiently large p1, pa > 0,
[0TN2 22722 4 072" + N 2?7 (01t + 03m° + 0143 X 0 10\ )
NP (0141, + O3, + 075 2X(0,1\Go )] dadt
SC]E/ [9%)\2’)’3%2 22401y F A 2 (0101 40307+ AP e (01T @ 9277z)]dxdt
Q
SC]E/ [(6F + 03)A%7®2%xc, + 0TMY° 2 + 03 (g5 + Av2x3o‘q§’x)x(0,1)\éo]dxdt.
Q
This implies that
E/ éQI:)\Z’ny2 Oc +,YZ +)\4 4 2 a(q%+q§)+)\272xa(qi$+q§’w)]dxdt
Q
< CIE/ 42 [A293227922 4 2% 4 Niqyda2 =0 (g2 4 n2) + A\2422% (g2, + n2)] dadt
Q

< CIE/ [(67 + 03)A%7°2%xq, + 0T AY* 2% dadt.
Q

This and (C.8) give the desired result. O

Appendix D. Proof of Theorem 4.1. First, a weighted identity for the sto-
chastic degenerate parabolic operator dy — (x*y,).dt is given. Define an unbounded
operator A:D(A) C L?(0,1) — L?(0,1) as follows:

Ay = (2"Ys)e, D(A)={y € Hy(0,1)z"y, € L*(0,1)}.

LEMMA D. Let y be a D(A)-valued continuous semimartingale, and set v = gy.
Then, for a.e. (x,t) €Q, and P-a.s. w €, one has the following weighted identity:

0 | —(2%v2) 0 — sty + i)\v] [dy - (sco‘yx)xdt}
= [(#%vy)s + s)\gmztv]th + %d( — sApv? + %2 + 1)\02)
— (2%, dv), — %x"(dvx)2 - %()\xo‘vm )odt + 1s’)\gow,f(dv)
- é)\(dv)z + % [(sw{p})t - %5)\29077/14 vAdt+ ~ )\x‘“v2dt
Proof. By Ité’s formula, we have

5[ — (#%g) s — sApYyv] [dy — (2%Ys) 2 dt]
= [ = (2°va)s — sAptv] [dvo — sAprdt — (2%0,),dt]

1 1 1 ~
= —(aso‘v$dv)$ + ixad(’l)i) - ixa(de)2 - §d(3)\<ﬂ¢tv2)

1, .~ 1A ~
+ i(sAgowt)tvzdt + 55)\80% (dv)? + [(2%0z)s + sAp0] %t

and
f)\ﬁv [dy (2%Yy)dt] = )\v [dv — sAptudt — (%0, 4 dt]
fd()\ 3 — %)\(dv) — ls/\chthZdt— f(/\x V) o dt + )\mO‘Uth
Combining the above two equalities leads to the desired equality (D.l). d
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Now, we prove the Carleman estimate (4.2).

Proof of Theorem 4.1. Applying Lemma D to (3.6), integrating the equality (D.1)
on @, and taking mathematical expectation, we can get

Q

:4IE/[(mavw)w—i—s)\wztv]2dxdt—|—2E/ [s)\gmzt(dvf—)\(dv)z—xo‘(de)2] dz
Q o2 Q
v

+2E/d (xavi—s)\go{/;tﬁ—f— 1

Q

Now, we evaluate the right-hand side of the above equality. For the second term, by
(3.6) and It6’s formula, it follows that

(D.2)
E /Q [SAWZt(dU)Q - i)\(dv)Q - z”‘(dvm)z} da

. 1 ~ ~ .
= IE/ {s)\cp9292—4)\9292—xa(egm)2} dxdtZCIE/ 62 (sAgQ—xo‘gi)dmdt.
Q Q

For the third term, recalling that 1275 =1, it holds that

) dx—i—E/ [Q(SAgplzt)tvz—s)&piZtﬁ—i—Axavi]dxdt.
Q

1
(D.3) E/ d (xavfc — sApv? + i)ﬂ)?) dz > —CIE/ (s\*(T) + z%02(0)) da.
Q 0
For the fourth term, we have
IE/ {2(5/\90%),5112 — s 2ph0? + /\xo‘vi} dzdt > CE/ 62 (s/\2y2 + /\aso‘yfc)dxdt.
Q Q

This together with (D.2)—(D.3) gives the desired inequality. |

Appendix E. Proof of Theorem 4.3. Based on (4.3), we prove Theorem 4.3
by a duality method. To achieve this goal, introduce the following forward stochastic
degenerate parabolic equation:

dy — (z°y,) dt = [525/\2}1 — (0?2 Ny )0 + Xa,us|dt
+ (v3 4+ O2sXH )W (t) in Q,
E.1 y(0,¢)=0 if0<a<l,
) { (%) (0,6) =0 if1<a<2 on (0,7),
y(ljt):() on (O’T),
y(z,0)=0 in (0,1),

where (h, H) is any given solution to (3.8), (us,vs) is the control variable, y is the
state variable, and Gj is an arbitrary subdomain of (0,1). Then, we have the following
controllability and inequality for (E.1).

PROPOSITION E. There exist a pair of control (ti3,v3) € Us = L2(0,T; L*(G3)) x
L2(0,T;L2(0,1)) such that (E.1) admits a solution § € H satisfying y(x,T) = 0 in
(0,1), P-a.s. Moreover,

]E/ 072(3% + 57N L TG2 + g, A2 +0F) dadt
Q

(E.2) N
<CE / 6% (sA’h® + Az*h2 + sAH?)dadt.
Q
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Proof. For any e > 0, construct the following optimal control problem (P.):

1 ~ 1 1
min —E [ 072(y® + X\ txg,ud 4+ 02)dadt + 4«:/ 2T dz},
(u3(-),v3(»))eu{ 2 /Q (y XGsUg 3) 2% ) Yy ( )

subject to (E.1), where U = { (us,vs) € Us| EfQ 072 (xc,u} + v3)dadt < oo }. Then,
one can check that for any e > 0, the above optimal control problem (P.) admits a
unique optimal solution (u3,e,v36,9e) EU x L2(0,T5; HL(0,1)). Also, u3 . = 60?X2cxG,
and v3 . =627, in Q, P-a.s., where (2., Z.) satisfies the following equation:

dze + (2%2e,0) At =0 2ydt + Z.dW(t)  in Q,

2(0,t) =0 if0<a<l,
53 { (2%2:2)(0,6) =0 ifl1<a<2 on (0,T),
z(1,6)=0 on (0.7).
ze(,0) = —Lye(x,T) i (0.1),

Next, a uniform estimate for the optimal solutions {(us3c,vs.e,yc)}es0 Will be
established. By (E.1), (E.3), and It6’s formula, it follows that

[ (= | atsas
= IE/Q (5723/? + 52/\3:°‘hwz571- + 528)\2th + Xas, 52/\252 + 9~ng + 525)\HZ5) dzdt.
This together with (4.3) indicates that for a sufficiently small € > 0,
E/Q (07292 + xG, 02022 + 62 Z2) dadt + iE/Ol y2(T)dx
< eE/62§25A2z§dxdt + C(G)E/QaQthzdxdt + GE/Q §2Axo‘zgyxdxdt
+C(e)E /Q 02Xz h2dxdt + €R /Q 0252 Z2dxdt + C(e)E /Q 0% s\H>dxdt
< CeE /Q 6? (5‘2y5)2dmdt + C(E)E/Q 62 (sA’h® + Az®h2 + sAH?)dzdt,

which implies that

B [ 57202+ xe A ik a1 [
o 0

(E-4) N
<CE / 0% (sA*h? + Ax®h2 + sAH?)dzdt.
Q

Moreover, by the first equation of (E.1) and It&’s formula, we find that for any € >0,

IE/ 5_25_1)\_1330‘y?’mdxdt
Q

<C

]E/ §*2y§dxdt+E/ 571Ia|hwy€,x|dxdt+E/ Alyehl|dzdt
Q @ ©

+ E/ 5*23*1)\*1X03|y5u&5|dxdt+E/ (027N "102 _ + 02 sAH?)dxdt
Q Q
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< dE/Q (5‘25_2)\_133(13?@ + 5_2y§ + 5‘25_2/\_1xg3y§)dxdt
+ C(G)E/ (02A2°h2 + 022202 + 072\ Iy ul ) dadt
Q
+ C’E/ (5‘2y§ + 5‘23_1)\_11)?2,,8 + §2$AH2)dxdt.
Q
This together with (E.4) implies
~ 1 1
E/ 072 (y2+ sTIA 1%y 4 xa AT ad L+ 0d ) dadt+ gIE/ y2(T)dx
(E.5) Q N 0
<CE / 0% (sA’h® + Ax®h2 + sAH?)dadt.
Q

Therefore, there exist a subsequence of {(use,vs.,V:)}es0 (still denoted by itself)
and (Us,03,7) € Us x L(0,T; L?(0,1)) such that as € — 0,

Uge —> Us weakly in L?((0,7) x ; L?(G3));
V3.e — U3 weakly in L?((0,T) x Q; L?(0,1));
Ye =Y weakly in L2((0,7T) x Q; L?(0,1)).

It is easy to show that ¥ is a solution of (E.1) associated to (us,vs) = (us,0s).
Also, by (E.5), we get that y(T') =0 in (0,1), P-a.s., and (E.2) holds. ad

Now, we prove the Carleman estimate (4.4) based on the inequality (E.2).

Proof of Theorem 4.3. For any fi,a" % fs € L2(0,T;L3(0,1)), let (h,H) be the
corresponding solution to (3.8). Denote by ¥ the solution of (E.1) associated to
(us,v3), which are the control mentioned in Proposition E. Then, by It&’s formula,

IE/Q 02 (Ax*h2 + sA2h? + sAH?)dzdt = ]E/Q (XGsUsh +§f1 +0sH — gy f2)dadt.
It follows that for a sufficiently small € >0 and a sufficiently large A > 0,
E /Q 62 (Azh2 + sA2h? + sAH?)dzdt
< eE/Q§_2(XG3)\_1ﬁ§ F 72403 4 s Il og? ) dadt
+CE /OT/G §2>\h2d:cdt+CE/Q§2(f12 + H? 4 s\z® f2)dadt.
s

This together with (E.2) implies the desired Carleman estimate. |
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